
BS108

DMOS Transistors (N-Channel)

Dimensions in inches and (millimeters)

FEATURES

- High breakdown voltage
- High input impedance
- ♦ Low gate threshold voltage
- ♦ Low drain-source ON resistance
- ♦ High-speed switching
- No minority carrier storage time
- ♦ CMOS logic compatible input
- No thermal runaway
- No secondary breakdown
- ♦ Specially suited for telephone subsets

MECHANICAL DATA

Case: TO-92 Plastic Package Weight: approx. 0.18 g

On special request, this transistor is also manufactured in the pin configuration TO-18.

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified

Symbol	Value	Unit	
V _{DSS}	240	V	
V _{DGS}	240	V	
V _{GS}	±20	V	
I _D	230	mA	
P _{tot}	0.831)	W	
Tj	150	°C	
T _S	-65 to +150	°C	
	V _{DSS} V _{DGS} V _{GS} I _D P _{tot} T _j	VDSS 240 VDGS 240 VGS ±20 ID 230 Ptot 0.831) Tj 150	

Inverse Diode

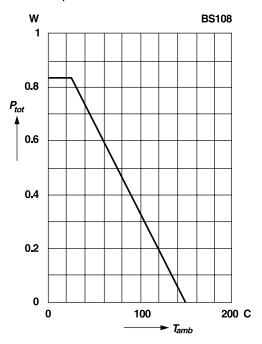
	Symbol	Value	Unit
Max. Forward Current (continuous) at T _{amb} = 25 °C	l _F	0.75	А
Forward Voltage Drop (typ.) at $V_{GS} = 0$, $I_F = 0.75$ A, $T_j = 25$ °C	V _F	0.85	V

BS108

ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified

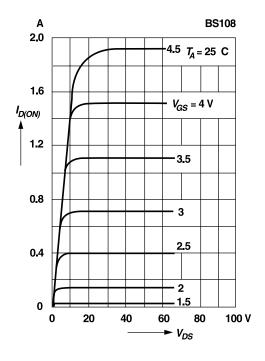
	Symbol	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage at I_D = 100 μ A, V_{GS} = 0	V _{(BR)DSS}	240	250	-	V
Gate-Body Leakage Current at V _{GS} = 15 V, V _{DS} = 0	I _{GSS}	_	_	10	nA
Drain Cutoff Current at $V_{DS} = 130 \text{ V}$, $V_{GS} = 0$ at $V_{DS} = 70 \text{ V}$, $V_{GS} = 0.2 \text{ V}$	I _{DSS} I _{DSX}	_ _		1 25	μA μA
Gate-Source Threshold Voltage at $V_{GS} = V_{DS}$, $I_D = 1$ mA	V _{GS(th)}	0.8	1.5	2.5	V
Drain-Source ON Resistance at $V_{GS} = 2.8 \text{ V}$, $I_D = 100 \text{ mA}$	R _{DS(ON)}	_	5.5	8	Ω
Thermal Resistance Junction to Ambient Air	R _{thJA}	_	_	150 ¹⁾	K/W
Capacitance at V _{DS} = 20 V, V _{GS} = 0, f = 1 MHz Input Capacitance Output Capacitance Feedback Capacitance	C _{iSS} C _{OSS} C _{rSS}	_ _ _	80 20 5	- - -	pF pF pF
Switching Times at V_{GS} = 10 V, V_{DS} = 10 V, V_{DS} = 10 U, V_{DS} = 10 U, V_{DS} = 100 V_{DS} Turn-On Time Turn-Off Time	t _{on}	_ _	5 50	_ _	ns ns


¹⁾ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

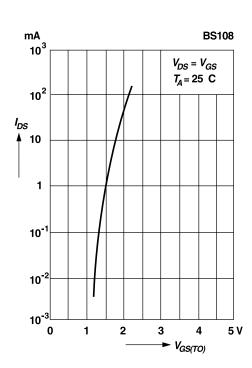
RATINGS AND CHARACTERISTIC CURVES BS108

Admissible power dissipation versus temperature

Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case



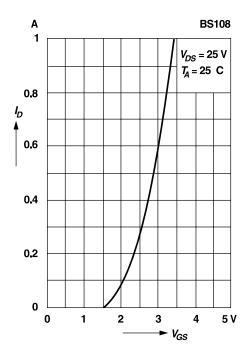
Saturation characteristics Pulse test width 80 ms; pulse duty factor 1%

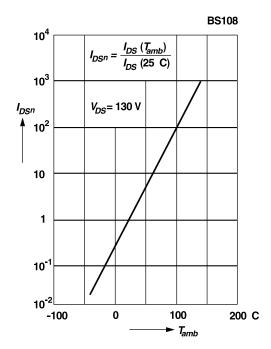


Output characteristics

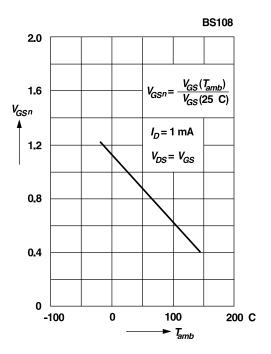
Pulse test width 80 ms; pulse duty factor 1%

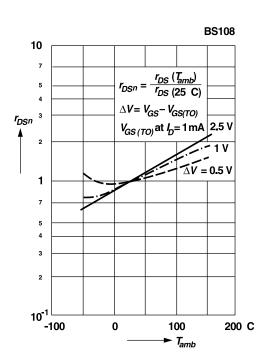
Drain-source current versus gate threshold voltage



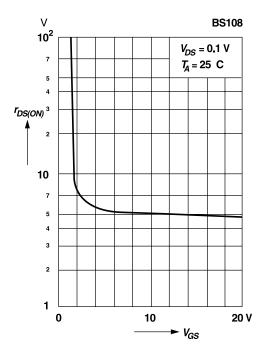

RATINGS AND CHARACTERISTIC CURVES BS108

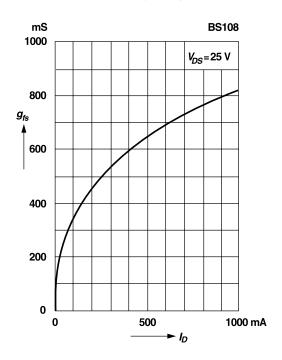
Drain current versus gate-source voltage


Pulse test width 80 ms; pulse duty factor 1%

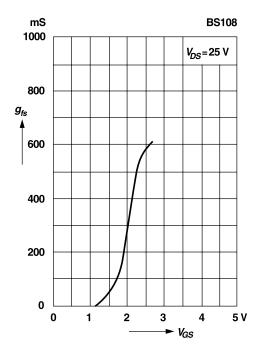

Normalized drain-source current versus temperature

Normalized gate-source voltage versus temperature


Normalized drain-source resistance versus temperature


RATINGS AND CHARACTERISTIC CURVES BS108

Drain-source resistance versus gate-source voltage


Transconductance versus drain current

Pulse test width 80 ms; pulse duty factor 1%

Transconductance versus gate-source voltage

Pulse test width 80 ms; pulse duty factor 1%

